Your masters program at

Control Systems CS

Prof. dr. Siep Weiland May 1, 2017

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

TU/

Master program in Control Systems

Core courses (15 ects in Q1)

- Complex and functional analysis
- Semiconductor physics and materials •
- Discrete mathematics
- Classical and modern physics

Specialization (10 ects)

- Model based control
- System identification

Professional skills (5 ects)

Elective courses (30 ects)

Internship (15 ects)

Graduation project (40+5 ects)

- Computational physics
- Nonlinear optimization
- Modeling dynamics
- Fundamental aspects of random signals and processes

Organisation master

Explore your masters

Contact capacity group

planning, internships, which electives, advice, ... depending on topic \rightarrow choose your coach

Decide on choice of elective courses

Decide on internship

What, where and when? Interest, schedule and planning, topic TU/e, company or abroad?

Decide on graduation project

Advice for control systems

Elective courses CS:

- Model reduction
- Model predictive control
- Robust control
- Selected topics in systems and control
- Advanced process control

Elective courses selected from:

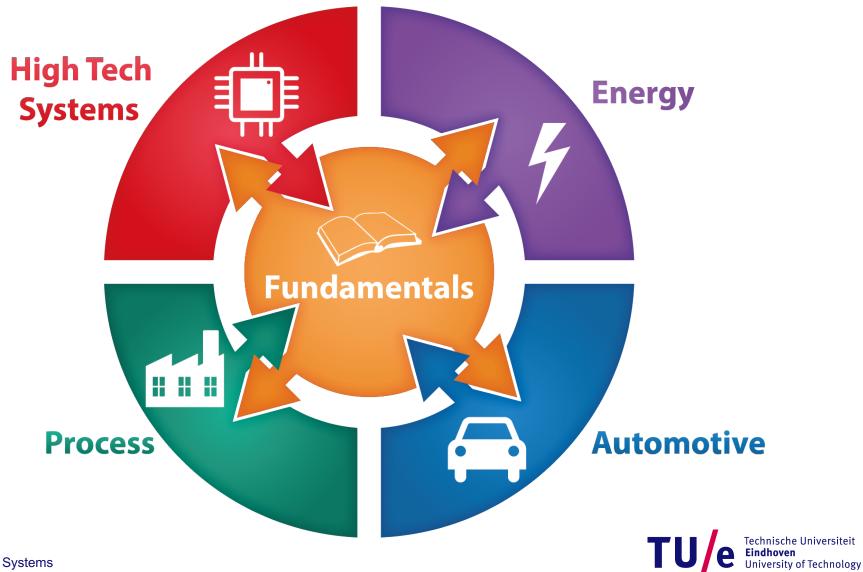
Electrical Engineering

(includes core and specialization courses)

- Mechanical Engineering
- 3TU Systems and Control Masters programme
- DISC PhD courses in Utrecht (see DISC website)

At least 15 ects need approval from your supervisor. Not ONLY control!

5LMA0 in Q2 5LMB0 in Q3 5LMC0 in Q3 5LMD0 in Q4 5LME0 in Q4



Advice for graduation work

- Nice and challenging time, planning is your own responsibility!
- Select topics you really like
- Be efficient and plan to finalize in 2 years.
- Get good grades and stand out (!)
- Reserve energy and time for graduation work
- Exceed your own expectations and develop yourself as a professional
- Put maximum value to your diploma

Research at Control Systems

CS: Control Systems


Application areas and people

High-tech systems

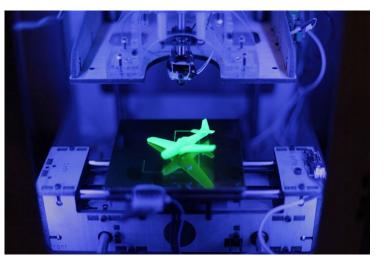
Energy networks and electrical power systems

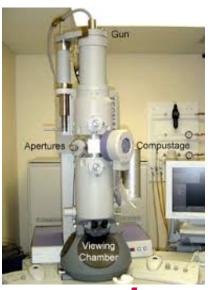
Process control

Automotive (electrical, electromechanical, chemical)

Graduation projects: Fundamentals

- Can bad models produce optimal controllers?
- How to identify network components?
- Complete distributed synthesis of distributed controllers: possible or a myth ?
- Is model reduction always a comprimise with physics?
- Can computers identify physical laws?
- Why do we sample communication channels in control systems ?
- How to detects errors, faults, safety threats in systems?
- How to speed up and optimize MPC ?
- How do Li-Ion batteries really work?
- [insert your question here...]


Graduation projects: High-tech systems


Robust, fast and accurate control and estimation in high-tech systems (collaboration HTSC)

Applications in

Lithography:ASMLJet, laser and 3D printing: Oce, CCM, UltimakerElectron microscopy:FEI

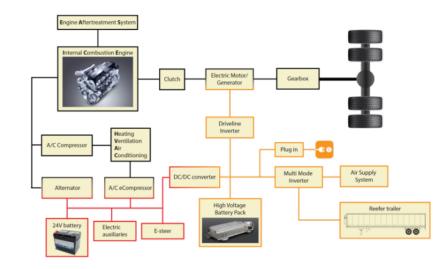
Technische Universiteit **Eindhoven** University of Technology

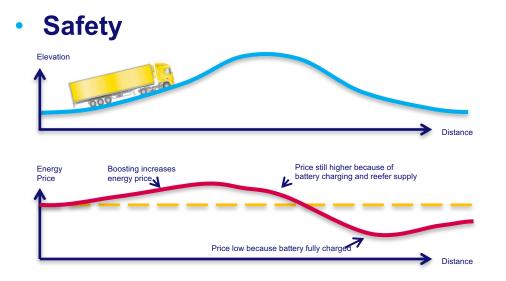
Graduation projects: Energy systems

Aim:

Modeling, control and identification of networked systems

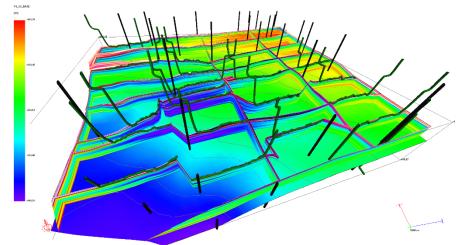
Applications in:


- Decentralized and distributed control (Energy companies)
- Price-based control for power and reserve capacity
- System identification for networks
- Power amplifiers (Prodrive)
- Battery modeling



Graduation projects: Automotive

- Complete Vehicle Energy-saving Technologies for Heavy-Trucks
- Decentralised and plug and play methods for energy management
- Battery modeling and monitoring



Graduation projects: Process control

Aim:

Control and monitoring of industrial processes, parameter varying systems

Applications in

- modeling and control of oil-water separation in wells (Shell)
- optimal tuning of Model Predictive Controllers (DSM)
- Process-wide monitoring and optimization (Friesland-food, Campina, DSM)

Once you started ...

A typical schedule

- Literature study, preparatory phase
- Research
- Regular meetings with coaches/supervisors
- Participation and at least 2 presentations at MSc seminars
- Publications ?!
- Thesis, presentation and defense
- Diploma within 9 months (guaranteed !!!!)
- Your first job within 12, 10, 5 **2** months: PhD, Pdeng, company.

Social events

Be in control !

Systems and control ... investment in life ...

- Industry-inspired, challenging problems
- Theory development Applications in industry
- Prepare and challenge yourself for the (uncertain) future
- More info May 11, 2017 (13.30 hrs).

Flux 5th floor: posters and presentations. Need registration!

